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Abstract—On thin-walled tubes, for finite plastic strain the precise measurement—to four decimal
places—of length, outside diameter. inside diameter, the uniform helices formed by initially straight
generators on the sutface of twisted cylinders, and the total angle of twist, becomes the basis for a
study of the kinematics of very large plastic deformation. The data are obtained from over 200 thin-
walled tubes of several ordered solids, including metal alloys, that have been twisted from small
angles to angles as large as 360°, and extended by axial strains from small to 30% or more. The
laboratory discovery is made that even at deformation of this magnitude, rigid body rotation of
principal axes is minuscule, a negligible phenomenon. Adding to these data the measured applied
moments, internal pressure, and axial forces, provides a direct calculation of Cauchy stress and
corresponding natural or deviatoric strain in the deformed reference configuration. From these
details, the rigid body rotation R of principal axes between deformed and undeformed reference
configurations, the deformation gradient F, the homogencous deformation V. the change in volume
due to plasticity, the degree of isotropy or anisotropy, and the applicable internal constraint, can
be determined directly for arbitrary loading paths without reference to any particular theory of
finite strain plasticity.

l. INTRODUCTION

In the recent past, finite plastic deformation in ordered solids has been the subject of diverse
conjecturc and numerous theorics. In an effort to delimit such conjecture and provide an
independent foundation for proper theory, this paper describes the state of a grossly
deformed solid by a measurement to four decimal places of a/f dimensions while at maximum
deformation. A kinematical analysis of the observed deformed state is independent of the
details of the deformation history that provided such a configuration.

Cylindrical thin-walled tubes for these studies have a length to mean diameter ratio of
10 with a wall thickness of from 10 to 15% of the mean radius, depending on the cir-
cumstances. The tubes are loaded by a measured arbitrary combination of axial force,
torsional torque, and internal pressure. Measurements are made of the elongation in the
axial direction while under load, the total angle of twist also while under load, and, of
special concern for the kinematical matters of interest here, the pre-deformation and post-
deformation outside and inside diameters, and the spacing of inscribed helices made by
lines initially parallel to the axis on the surface of the undeformed cylinders.

The measurements of outside diameters are made in orthogonal directions at five
locations along the tube. This provides, in each instance, a total of ten measurements to
assure that the cylinders were originally circular and remained so at large deformation. In
the central region the inside diameters are measured by point to point telescope gages
inserted in four radial directions at each open end of the tubc. (See Appendix and
Table 1.)

For proportional loading at any ratio of internal pressure and axial force, since the
principal axes do not rotate, the prediction and description of response offer no difficulties
when first Piola-Kirchhoff stress components are compared with geometric strain com-
ponents, both defined with respect to the original, undeformed reference configuration
(Bell, 1988a).

Let R designate a rigid body rotation of principal axes between the deformed and
undeformed reference configurations, where R~' = R', Kinematical problems arise in deter-
mining R when the tubes are subjected to torsional twist, particularly when twisting occurs
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with simultaneous axial elongation and hence combines with the finite plastic strain defor-
mation that is observed when rotations are absent.

The finite plastic strain is indeed large. The tubes are elongated by an tncrement in
excess of one-third of their original length. They are twisted a complete turn of 360 . The
bounds are experimental.

In analyzing these data, the purpose is to explore kinematical underpinnings. inde-
pendent of any particular continuum theory of finite strain plasticity. When these kine-
matical details have been established, however, it is pertinent to pay heed to the logical
restrictions they impose on the choice of continuum theory in particular, and on assumptions
in general.

Since the time of my first incremental wave experiments in finite strain plasticity in the
summer of 1949, [ have maintained a library of deformed specimens that. together with the
detailed written records of each test, provide a basis for the review of earlier data. such as
that described below. Beginning in September 1958, all my tests. or those of my graduate
students. have been and still are numbered consecutively in order that they may be referred
to from one study to another or from one paper to another. From the nearly 300 thin-
walled tubes for Il metals and metal alloys that constitute approximately 20% of this
specimen library for the interval between 1967 and the present. [ have chosen as rep-
resentative and of particular interest for the present discussion, 31 tubes the responses of
which have been described in great detail in three recent papers.

All the copper tests included below except for tests 2316, 2317, and 2319, are described
in Bell and Khan (1980). These three copper tests are examples from the cyclical loading
scrics described in Bell (1983a). The 1020 anncaled mild steel tests are described in Bell
(1983b). By choosing these tests among the many that also have been similarly analyzed,
onc omits a repetition of detail here, and refers to those recent sources for the detailed
desceriptions of the finite strain response for any given test.

An unequivocal, complete description of the deformed state for farge finite strain
permits a kinematical analysis independent of stress. That the kinematical analysis is
independent of stress infers, too, that it is independent of whatever theory of finite strain
plasticity has been invoked to characterize observation. On the other hand, given the loads,
with all specimen dimensions in the deformed state being measured, it becomes possible
to determine the Cauchy stress and the corresponding strain in the deformed reference
configuration,

2. THE KINEMATICS OF “SIMPLE™ TORSION AT FINITE PLASTIC STRAIN

One begins with the tabulation (in Table 1) of data on tubes subjected only to a
twisting torque. In comparing these data with those in Table 2 for which large axial forces

Table |
Outside {nside
L, Ly [nitial diameter Initial diameter
pre- post- outside  maximum  inside  maximum  Maximum Maximum
deformation deformation diameter deformition diameter deformation twist, shear,
Test  Solid (in.) (in.) (in.) (in.) (in.) (in.) U (deg.) '
2230 Fe 4277 Buckled 0.4143 0.4145 0.3755 0.3750 113 0.093
2258 Fe 4.219 4188 0.4401 0.4394 0.3750 0.3753 103 0.086
2259 Fe 4219 4172 0.4398 0.4403 0.3750 0.3756 195 0.167
2260 Fe 4.203 4.170 0.4396 0.4389 0.3750 .3754 147 0.127
2261 Fe 4.219 4.156 0.4397 0.4394 0.3750 0.3747 280 0.238
2264 Fe 4219 4.192 0.4399 0.4389 0.3750 0.37414 229 0.197
2265 Fe 4.219 4.182 0.4400 0.4411 0.3750 0.3750 283 0.243
2283  Fe 4.219 Buckled 0.4150 — 0.3760 0.3758 108 0.068
1832 Cu 4.125 4.078 0.4410 0.4409 0.3755 0.3753 148 0.128
1760 Cu 4.250 4.203 0.4234 0.4294 0.3750 0.3755 121 0.101
1763 Cu 4.187 4141 0.4205 0.4201 0.3763 0.3747 163 0.137
1778 Cu 4.187 Buckled 0.4185 0.4152 0.3765 0.3753 207 0.169

Total average 1! tests 0.4334 0.4333 0.3752 0.3753




Experiments on the kinematics of large plastic strain in ordered solids 269

Table 2. (See Appendix for more detail.)

Maximum Total angle Circumferential strain Maximum
axial of twist, shear Load
Test strain, E,_, @ (deg.) od. E(max) id. E(max) strain, s,, Solid path
1812 0.043 199 ~0.023 —0.021 0.182 Cu P
nn 0.036 297 -0.023 —-0.033 0.274 Cu NP
1815 0.048 20 -0.022 —0.028 D.181 Cu NP
2269 0.049 113 -0.024 -0.028 0.104 Fe NP
1813 0.068 179 -0.030 -0.032 0.145 Cu P
1805 0.075 150 -0.033 -0.037 0.138 Cu NP
1799 0.076 163 - 0.040 —0.045 0.149 Cu NP
2270 0.092 302 - 0.048 —0.052 0.283 Fe NP
1806 0.093 154 - (.047 —0.049 0.141 Cu NP
236 0.106 t -0.059 —0.060 t Cu NP
3332 0.109 9 - 0,048 —-0.055 0.007 Fe |
2317 0119 t - 0.060 —0.061 t Cu NP
2319 0.134 134 -0.065 —-0.068 Q.147 Cu NP
2286 0.137 114 ~0.068 ~0.068 0.103 Fe P
2167 0.180 144 -0.089 —-0.093 0.129 Fe p
2169 0.204 214 -0.104 -0.103 0.193 Fe NP
2210 0.218 66 ~0.102 —0.106 0.061 Cu P
wn 0.240 347 ~0.119 —0.122 0.292 Fe NP
2262 0.246 176 -7 —0.126 0.204 Fe P
1974 0.197 0 -0.102 —0.097 0.000% Cu P

+Tests 2316 and 2317 were cyclically loaded many times in large clockwise and counterclockwise torsion
during increasing axial strain. The absolute difference in measured torstonal strain is 0.260 (Bell, 1983a).
1 Pure tension.

accompanied the twist, one must remember that for the tests in Table 1 no axial loads were
imposcd. The following were measured @ angle of twist determined while under load, the
maximum shear strain in the undeformed reference configuration, s, determined under
load from s, = [R,8]/L,. the pre- and post-deformation inside and outside diameters, and
tube fengths. The gquantities R, L, and 8 are the mean undeformed radius, the undeformed
length, and the total angle of twist. The pre-deformation inside diameters were precision
reamed with a special tool to 0.3750 in. with the dimension confirmed by a similarly precise
internal, 0.3730-0.3770 in. dial gage, inscrted into the central regions of the tube.

As the data in Table 1 indicate, the outside and inside diameters remain constant.
There is no change in the mean diameter or cross-sectional arca of the tube, irrespective of
the magnitude of the angle of twist. Moreover, the helices formed from initially inscribing
parallel gencrators on the surfuace of the undeformed cylinders remain smooth and evenly
spaced.

In Table | the averaged deformed outside diameter for an average angle of twist of
174 diflers by 0.0001 in. from the averaged pre-deformation diameter, For inside diameters,
the difference in the averages is also 0.0001 in. Seventeen of the 23 diameter comparisons
have individual differences of well under 0.0010 in. with an average individual difference of
less than 0.0004 in. The average individual difference for all 23 comparisons is 0.0009 in.

To emphasize that the maximum angles of twist are close to failure, one notes that the
specimens of tests 2230, 2283, and 1778, with a wall thickness of only 10% of the mean
radius, all buckled. Test 2265 was in the process of buckling as the tube was unloaded.
Specimens with a wall thickness of 15% of the mean radius underwent gross buckling when
twisted just above the 283" maximum of test 2265.

Of equal kinematical significance is the presence of a reverse version of the Wertheim-
Poynting effect. The length of the specimen, L, decreases a small amount, £, = AL'L,.
Such a decrease in length during simple twisting makes evident that for thin-walled tubes
the finite deformation of simple twisting is not in simple shear. Since the cross-sectional
area is unchanged even for a total twist angle of 0 = 283", such a decrease in length is
incompatible with the commonly assumed internal constraint of isochoric deformation or
incompressibility in finite strain plasticity.
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3. THE DEFORMED STATE FOR COMBINED TENSION-TORSION

In Table 2 are 19 tests on annealed copper and annealed mild steel, listed in the order
of the maximum measured axial strain, from 4.3 to 24.6%. The first column gives the test
number that may be used to locate the illustrative tests. first cited in Bell and Khan (1980)
and Bell (1983a, b). The second column is the maximum axial strain, £_,, measured while
under load. The third shows the total angle of twist, €, also measured under load. The next
two columns tabulate the maximum circumferential strain, £, = (D~ D)/D,. determined,
respectively, from comparing outside diameters before and after deformation and from
comparing inside diameters before and after deformation. {Sce Appendix for the detailed
listing of the data for inside and outside diameters.) The sixth column tabulates the
maximum shear strain in the undeformed reference configuration. 5., = R 0/L,. The
remaining two columns indicate. respectively, the tvpe of solid and whether the loading
path is proportional or nonproportional. As will be discussed in detail below, due to
unloading, the circumferential strain determined from the inside diameter differs slightly
from that determined from the outside diameter. The average is used in the analysis below,
As will be shown, the final results are relatively insensitive to this choice of measurement.

These data provide a complete description of the shape of the deformed tube, including
the change that has occurred in wall thickness. Test 2271 is for a mild steel tube twisted
nearly a complete turn, 0 = 347", and at the same time axially extended by 24%. This
spectmen was loaded first in tension alone then in torsion at constant tension, a non-
proportional stress path, In the tests in Table 2, the variety of maxima in both extension
and shear encompasses the range of finite deformation. At or bevond the fargest values, the
specimens cither neck in tenston or buckle in torsion. The lurgest angle of twist obtainable in
any solid studicd has been 0 = 360 accompanicd by 30% axial strain. However, as will be
shown below, the fargest rigikd body rotation of principal axes in Fe and Cu oceurs not for
test 2271 at # = 347 twist but for test 2211 in which the axial strain is only 4.6% and the
angle of twist reaches only 0 = 297,

4. A KINEMATICAL ANALYSIS OF LARGE FINITE PLASTIC DEFORMATION®t

Introduce the polar coordinates R, O, and Z on original cylinder. Let

a=D/D, =1+ F,
v= R WL, =5,
S=1+AL/L, =1+ E,
where D, AL and 0 are all determined from measurements in Tables 1 and 2. and R, L.

and D, are the pre-deformation mean radius, length, and diameter. For the deformation,
let

r=uaR (H
0=0+(/Ry)Z (2
=87 3)
Map to the plane R/R,, = 1, then
X, =z1=03X, 4)
Xy =10 = 2RO+ (/R Z] = 2 Xy + 27X, (3)

+ Once again | am indebted to J. L. Ericksen (Ericksen, [987), in this instance for his suggestions on how
best to interpret these data.



Experiments on the kinematics of large plastic strain in ordered solids 271

x;=r=alX; ()
gives
é§ 0 O
F=lay a 0]=VR @
0 0 «

For the two-dimensional problem, try

cos¢ sing O
R=|—-sing cos¢ O
0 0 1

then the two-dimensional part of FRT = V must be symmetric

dcos ¢ —dsin ¢ 0
V={asingp+aycos¢d —oaysing+acos¢ 0} 8
0 0 o

Onc needs a sin ¢ +ay cos ¢ = —Jd sin @, or
tan ¢ = —(ay)/(x+9). %)
Also, from ¢gn (8) onc may write

trace V = aq+a cos ¢ —ay sin ¢p+0 cos ¢
= a+ (a+0J) cos ¢ —ay sin ¢
= o+ (x+5)[cos ¢+tan ¢ sin @]
or

trace V = a+ (o +J) sec ¢. (10)
Introduce the geometric strain E where E = V—1. Then
trace E = trace V~3 = a+ (2 +3) sec ¢ —3. 48]

Finally, from eqn (8) one obtains /Ily, from which any change of volume, AU, can be
determined. In eqn (12), U, is the pre-deformation volume

AUJUg = HIy—1 = a?6—1. (12)

For a, y, and J provided by the measurements in Tables | and 2, one sees tabulated in
Table 3 the angle of the rigid body rotation of principal axes, ¢, from eqn (9), and trace V
from eqn (10).

The most striking feature of these results is that although the average maximum angle
of twist is half of a complete turn, § = 176°, the average angle, ¢, for rigid body rotation
of principal axes at that maximum is minuscule; it is only ¢ = —4.19°, Even for an angle
of twist of nearly a complete turn, simultaneously accompanied by an extension of 24%,
the rigid body rotation is only ¢ = —6.91° as is seen in test 2271. The largest angle ¢
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Table 3
Maximum  Maximum
twist, elongation. ¢

Test 8 (deg.) E. (™) x v o {deg)) Trace V
2230 113 — 1.000 0.093 e —-2.66 o
2258 103 -0.7 1.000 0.086 0.993 -247 2.9950
2259 193 —-1.1 1.001 0.167 0.9%9 —4.80 29960
2260 147 —~0.8 1.000 0.127 0.992 -~ 363 2.9960
2261 280 - 1.5 .999 0.238 (L9833 ~6.84 2.9992
2264 229 -0.9 0.99%8 0197 0.991 - 5.65 3.0007
2265 283 —-0.9 1.001 0.243 0.991 —6.96 3.0058
2283 108 —-— 1.002 0.068 —~1.95 o
1832 148 - 1.1 1.000 0.128 0.989 ~ 368 2.9931
1760 21 ~ .1 [ .OUR 3101 0.989 —291 29916
1763 165 ~ 1.1 0.999 0.137 {.989 —3.94 2.9937
1778 207 — 4.997 J.169 — —4.83 o
1812 199 3.3 0.978 0.182 1.043 —-5.03 3.0068
2211 297 4.6 0.972 0.274 {046 -7.52 30075
1815 201 4.8 0975 0.181 [.O48 4.9 30022
2269 113 4.9 0.974 0104 1.049 —287 2.9995
1813 179 6.8 0.969 0.145 1.068 —-3.95 2.9968
1805 150 7.5 0.965 0.138 1.075 -3 2.9968
1799 163 7.6 0,958 0.149 1.076 —4.01 29960
2270 02 9.2 0.951 0.2813 1.092 ~7.50 3.0096
1806 154 9.3 0952 0.141 L9} ~ 376 3.0014
2332 9 0.9 0.949 0.007 Llow —01y 30006
2319 133 [ RE 0934 0147 [ RS - 380 30010
2286 i 13.7 0.9312 0,103 1137 -~ 266 30032
2167 144 180 (G 3] 0.129 [.(80 —3.21 30013
2169 214 g 847 0193 1204 ~-4.71 30041
2210 6t 208 0.896 0.061 1.218 ~1.48 10107
2271 47 240 0.X79 0.292 1.240 - 0.9 30094
2262 2 246 0.878 0.204 1.246 S4.84 310095

avg, 176 avg, 409 RELTHY

obscrved inany of the tests is that for test 221 1. The rotation of principal axesis ¢ = —7.52°

for a test in which the maximum angle of twist is smaller than that of test 2271, namely,
0 =297, with a maximum axial strain of just 4.6%. A similur angle is obtained for test
2270 at § = 302 twist and only 9.2% extension. For anncaled Cu and Fe, efforts to exceed
the maxima in tests 2271, 2211, and 2270 resulted in either necking or buckling of the tube.

To emphasize the negligible role of the ngid body rotation in farge finite deforma-
tion, onc notes that for the average angle of ¢ = —4.19 . onc has cos ¢ = 09973,
sec p = 1.0027, and sin ¢ =tan ¢ = —0.073 = ¢. For test 2169, where both the axial
strain and shear strain are approximately 20%, the rotation angle is only ¢ = —4.71". All
combinations of equal strain below 20% (such as that of test 2319 at a combination of
strains of approximately 14% where ¢ = —3.80 ) emphusize the negligible role of rigid
body rotation of principal axes, including finite strain at the obtainable maxima.

The first group of tests, from test 2230 through test 1778 in Table 3. are for twisting
alone, in “simplc™ twisting. In cach instance there is a small decrease in specimen length,
as noted above. For a larger wall thickness, test 2265, the largest angle of twistis € = 2837
the rigid body rotation is only ¢ = —6.96 . This was onc of several tubes in which initially
straight lincs along the generators of the undeformed cylinder produced parallel. undistorted
helices at maximum deformation.

A sccond striking feature of the results of the kinematical analysis tabulated in Table
3 is that the average value of trace V is 3.0010. Since trace E = trace V-3 one has
trace E = 0.0010 in eqn (11). This is in accord with results from the direct measurement of
changes of volume given by the internal constraint trace E = 0 for stress paths in which
there is no rigid body rotation. In the absence of rotation, the internal constraint, trace
E = 0, has been observed from the measured diameters of thin-walled tubes in pure tension,
solid cylinders and cubes in pure compression. and from displacements of cubes under load
in the Bridgman two-dimensional compression experiment. There is no rotation of principal
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Table 4+
AUIUy = I — 1 AUV, = 1T -1

E. E,,
Test A B (%) Test A B (%)
1812 -0.002 —0.001 43 2332 —0.001 —0.009 10.9
bl B -0.012 -0.002 4.6 2319 —-0.012 -0.013 1.9
1815 —0.004 -0.002 4.8 2286 -0.012 -0.013 134
2269 -0.005 -0.002 4.9 2167 —-0.025 -0.013 13.7
1813 0.003 —0.003 6.8 2169 —0.03t -0.023 18.0
1805 0.001 —0.004 1.5 19742 —-0.029 -0.027 19.7
1799 —-0.012 —0.004 7.6 2210 —0.022 -0.029 204
2270 -0.012 0.006 9.2 2271 ~0.041 -0.039 240
1806 —0.009 —0.008 9.3 2262 —0.039 -{.042 246

t Bauschinger (1879) was the first of many to measure changes of volume during loading for finite plastic
strain in metals and other solids. As a result, he also was the first to find that unloading restored the original pre-
deformation volume. A comparison of pre-deformation and post-deformation volumes was, and is, a poor
indicator of incompressibility during plastic flow. One must measure volume during loading, not after unloading.

+ See test 1974 in Table 2 for pure tension, where for trace E = 0, one has E, = —£,,,2, or for E,, = 0.197
measured. one has E, = —-0.0985 predicted and from Table 2 one has the post-deformation measurement 0.0995.
Calculated for simple tension, for test 1974 the change of volume at maximum strain is AU/U, = —0.029 as
shown.

axes in the Bridgman pure shear compression experiment or in pure tension or compression
(Bell, 1988a).

Given V = E—lonecan see from eqn (14} that trace E = 0 implics a change of volume
during loading in the finite plastic strain domain

AU/U() = Lriace l':"lly““l[[[. = IIIV "‘I (‘3)
or
AU/U() = "‘1!|.:+I!l‘.;< (14)

From /11y, one may determine the Cauchy stress 6 in terms of the internal constraint,
tracc K =0;d = (/{l,) ', FT = (279) "' Vo, where Tk is the transpose of the first Piola -
Kirchhoff stress tensor,

Under heading A in Table 4 are tabulated the changes of volume obtained from eqn
{12) using the data of Table 3. For comparison, tabulated under heading B in Table 4 are
the predicted changes of volume for simple tension determined from the internal constraint
trace E = 0 using egn (14).

Beatty and Stalnaker (1986) have discussed the general implications of the fact that
the present author's internal constraint, trace E = 0, leads to a Poisson tunction of 1/2 in
simple tension. In the present instance, in such terms, one has for the radial strain,
E, = —E../2. Hence, eqn (14) becomes AU/U, = —(3/4)EL + (1/4)E]..

Both y =5, and 6 = | + £, in Table 3 arc determined while the tube is under load.
As was indicated above, the quantity x = D/D,, is at present accurately determinable only
after the load has been removed. During unloading there is a return to the pre-deformation
volume; hence 2 is slightly modified. Direct experimental measurement during loading and
unfoading has shown that not only is the original volume recovered but also the details of
recovery are not dimensionally uniform. The interesting general properties of this recovery
of volume are the subject of current laboratory study, i.c. a study of constitutive equations
for loading in the opposite direction.

Contrary to the classical expectation for unloading when one assumes the internal
constraint of incompressibility, the measured unloading from finite plastic strain governed
by the internal constraint trace E = 0, is a small strain plastic recovery, not a linear clastic
recovery. To observe and measure this, one must accuratcly compare specimen dimensions
measured under load and during unloading, with dimensions measured when that load is
completely removed. Bauschinger (1879) did this for tensile as well as for compression
measurements on a cubical section of long rectangular bars of steel and other solids, using
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an optical technique which he developed., and in 1973 [ introduced similar tests for the 25%
axial compression of circular solid bars of copper (Section 4.35 of Bell (1973)). In a current
paper (Bell. 1988a). the detail of this unloading behavior in cubical specimens. using the
Bridgman two-dimensional compression experiment. provides accurate strains for strain
components, each of which is well over 20%. The strains are accompanied by directly
measured changes of volume as high as 4% due to plasticity. In such tests, «/f dimensions
of the cube are continuously, and accurately. measured as the plastic strain increases. As a
consequence. during unloading one also may determine the relatively small plastic strain,
including the recovery of the volume to approximately its pre-deformation value. The
present paper extends the same measurements of changes of volume to tubes twisted in
torsion, obtaining. as shown in Table 4. numerical values comparable to those previously
observed in other loading situations. The problem in torsion is somewhat more ditfficult, in
that the torsion is observed on thin-walled tubes the inside diameters of which are not readily
measurable under load. As is shown below, however, this post-deformation measurement of
inside diameters has only a small influence on the result. since all other pertinent par-
ameters —the fength. the ungle of twist, and even the outside diameters-—can be measured
before unloading begins, as well as after it has ended.

As a result of the fact that the internal constraint does not apply during unloading,
onc has the systermatic small differences in circumferential strain for post-deformation
measurcments of inside and outside diameters in Table 2.

In Table 3 the values of x were the mean from the measurements of the inside and
outside diameters. In fact, the determination of @ in eqn (9) is insensitive to this choice.
For the mcan . in Table 3 the average angle was shown to be ¢ = —4.19 . From the
similarly averaged « from outside diameters alone, the average angle differs by less than
0.005 " from the angle ¢ = —4.19 . The same difference of 0,005 1s found for the averaged
a from inside diameters alone. For the mean values of 2, from eqn (10) one has an average
trace ¥V = 3.0010, as shown in Tuble 3. This becomes trace Vo= 29989 for an average based
only upon x determined from inside diameter measurements, and trace V= 3.0033 for x
based only upon outside diameter measurements. For the mcan z, the average of the changes
in volume tabulated in Table 4 is AU U, = - 0,014, When x is the average from outside
diameters alone, the average of the changes of volume tor these tests is AU/U, = —0.011,
whereas when o is the average from inside diameters, the average of the changes of volume
is AU/U, = —0.018.

A revealing illustration of the negligible role of the rigid body rotation of principul
axes is as follows : rewrite the matrix of eyn (8) as

Jdcos ¢ —d sin 0
V=|-dsing (x+dsin” p)seccdp 0] (15)
0 0 %
Inegn (15) the component of strain related to shearis ¥, where V, = £, = —J sin .
The corresponding shear strain is s, = 2£,, or 5, = —2dsin ¢. Letting sin ¢ = ¢, the
comparable shear strain in the approximation is s,, = 2£,, = —25¢. Noting from Table 3

that s,, = 7. onc may write the approximation for the determination of ¢ as

¢ = —v/20. (16)
For the 29 tests of Table 3, calculating ¢ by eqn (16). one obtains an averageof ¢ = ~4.16",
almost indistinguishable from ¢ = —4.19 averaged for the same tests using eqn (9).

In sum. from the above one must conclude that for the twisting and extension to very
large finite strain the role of the rigid body rotation of principal axes is negligible. To a
close approximation R = L
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5. FROM KINEMATICS TO AN INTERNALLY CONSISTENT CONTINUUM THEORY

As with the analysis of the kinematics of gross deformation of beams described in a
separate manuscript, the motivation for the above kinematical study was to resolve an
apparent dichotomy. In 1971, on the basis of the then newly discovered internal constraint,
trace E = 0, found in experiment, and a physical theory of finite strain plasticity compatible
with that constraint, both being products of many years of experiment in the present
author’s laboratory. Ericksen suggested an interpretation of this investigator’s physical
theory that led to an internally consistent continuum theory. The development of this
continuum theory is described in Bell (1983a.b. 1985a,b, 1988a) and may be very briefly
outlined as follows. Within the precepts of the earlier experimentally based physical theory.
for isotropic solids in which the work done per unit volume in the undeformed reference
configuration, W', depends only on the invariants of the strain tensor E = V—~1, a com-
bination of the general work statement W = trace TiF and the statement for polar
decomposition. F = VR, leads directly to a symmetric stress tensor o = RTY, where Ty is
the first Piola—KirchhofT stress tensor, R~ ' = RT the rotation tensor, and V a pure homo-
geneous deformation.

The apparent dichotomy that generated the present series of kinematical studies arose
because in experiments on the gross twisting of thin-walled tubes and on the gross bending
of beams—where, for both situations, one would herctofore have anticipated a large
contribution from rigid body rotation of axes—none was observed. Instead, in ¢ = RTE,
R = I was found in experiment for all loading paths, including those of arbitrary com-
position and direction. The applicable stress tensor closely approximates a symmetric form
of the generally non-symmetric lirst Piolu-Kirchhofl stress tensor.

These kinematical studics have resolved the apparent dichotomy. The rotation tensor,
R ' = R", and the continuum analysiy its presence implics, is present and measurable both
for twisted tubes and for grossly deformed beams. The fact that R, when present, is
negligible for all stress paths, including those at very large deformation, unifics in a close
approximation the internally consistent continuum theory with the experimentally based
physical theory that preceded it.

Let us summarize the relevant detail from a series of recent papers (Bell, 1983a, b,
1985a. b, 19884.b). From experiment one has the universal function T() relating the
sccond invariants of a total stress tensor T = 2//; and the geometric strain tensor
(dT)° = 21l,¢, eqn (17), the incremental constitutive statements, eqn (18), and, also from
experiment, the internal constraint, eqn (19)

dT?/dI" = * = constant (1"
dE = 2S dT/#* (18)
trace E=0 (19)
00/0X+prb = pg Ov/Ct (20)

where £ is a measured material constant for the ordered solid under study, and S, the total
stress, is the sum of the applicd stress o = RTj and a stress that does no work, provided
by the internal constraint of eqn (19) (Bell, 1983a, 1985a), and p, is the mass density in the
undeformed configuration.

For specified proportional loading paths where the ratio of stress components remains
constant during loading, eqn (18) can be integrated, providing

E,=S,TIf*+E,; n

where £, are determined constants, the intercepts on the strain axes.
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For any combination of uniaxial tension and torsion along stress paths of arbitrary
composition and direction, when the rigid body rotation R in the stress tensor ¢ = RT} is
approximated as R = L. the incremental constitutive statements of eqn (18) reduce to

dE,. =40, dT/34° (22)
and
ds,, =do,, dT/B°. (23)
The form of the second invariant of S in eqn (4) becomes
T=[230] +2}]"" (24)
while the form for the second invariant of dE becomes
dl = [(3/2) dE; +(1/2) ds] ]V (25)

If the stress path is such that one has proportional loading. i.e. the ratio of 6, /d,, is
constant, eqns (22) and (23) become

E. =2, T3} (20)
and
s =20, T (27)
where
T=[23)al +26}]'" and ' =[3/)EL+(/2)s3]" 2 (28)

The detailed experimental evidence for the correlation between measurement and eqns
(22) (28), assuming R = L, is as follows. Plots of £, vs 5, of all of the mild steel tests of
Tables 1 and 2 are found in Fig. 5 of Bell (1983b). In Figs 6 and 7 of the same paper are
found T() and 77 vs T plots for the same tests. For the anncaled copper tests of Tables
I and 2, the repetition of the Taylor and Quinney experiment, test 2319, is shown in Fig. 3
of Bell (1983a). Plots of T vs [T and E., vs s, for the cyclical loading tests 2316 and 2317
are given in Figs 9-12 of that same paper. Plots of 77 vs I of all of the remaining anncaled
copper tests of Tables Tand 2 ure given in Figs 1 and 7 of Bell and Khan (1980): £, vs s,
plots for the same tests are given in Figs 2 and 8 of that paper. Of special interest is the
non-proportional loading test 2211 which was illustrated in great detail in Figs 3-5 of Bell
and Khan (1980).

For the maximum deformation of the tests listed in Table 3, given ¢ from ¢qn (9), one
may calculate T and I in the deformed reference configuration. At maximum deformation
in the deformed reference configuration the average for 7 and the average for [ differ by
the order of 1% from T and I' determined in the undeformed reference conliguration. For
strains below the maxima the difference becomes unmeasurable! From eqn (15) one may
calculate s, and £, in the deformed reference configuration to compare with measurcment
in the undeformed reference configuration. For all tests listed in Table 3, for s, and £, at
maximum deformation in the deformed and undceformed reference configurations, the
average differences are 0.51 and 0.65%, respectively. For the tests in combined tension-
torsion alone (tests 1812-2262) the average difference for s, and E., in the deformed and
undeformed reference configurations at the maximum deformation obtainable before failure
are 1.46% for s, and 2.76% for E,.. For strains below these maxima the difference between
values in the deformed and undeformed reference configurations become unmeasurable!
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From Table 1. there is no change in inside or outside diameter for tests in torsion
alone, even for the largest angle of twist obtainable before buckling. Hence, at all finite
strains for simple twisting the definitions of 6., and s,, are given exactly by the undeformed
mean radius R,,. Diametral changes occur when torsion is accompanied by axial extension,
but when one introduces the deformed mean radius r,, in place of the undeformed mean
radius R, the modifications of o,, and s, are less than 2% at maximum deformation and
unmeasurable for smaller strains.

Thirty years of laboratory data that include measurements at large finite plastic strain,
permit the following statements. From axial tension experiments on thin-walled tubes and
on solid bars having circular and square cross-sections ; from the simple twisting of thin-
walled tubes; from axial tension combined with torsion in thin-walled tubes for ratios of
principal stress from — 1 to 0; from axial tension combined with internal pressure in thin-
walled tubes for ratios of principal stress from 0 to 1 ; from simple compression in cubical
blocks and cylindrical bars ; from two-dimensional compression. the Bridgman *“pure shear™
experiment, introduced in 1946 ; from the variation of Bridgman's two-dimensional com-
pression test introduced as such in the 1960s and now sometimes referred to as the “*Channel
Die™ experiment; from compression and tension plastic wave experiments at high strain
rates : from repetitions of and extenstons of the Taylor and Quinney experiment introduced
in the 1930s; and from recent experiments involving the gross deflection of cantilever and
simply supported beams—the same set of incremental constitutive equations, eqns (18),
with R = I, and the universal function, eqn (17), have been found to apply. whether or not
rigid body rotations of principal axcs are present.

For non-proportional loading, these data demonstrate that large finite plastic defor-
mation in ordered solids is isotropic, has an internal constraint other than incompressibility,
and is given by a path-dependent incremental continuum theory approximated in the
undeformed reference configuration. Given the stress path, one must integrate the incremen-
tal equations to ascertain the strain components. For proportional loading, such an inte-
gration provides constitutive statements directly relating stress and strain components.

During loading along proportional stress paths, with £, and o, determined as above
in the undeformed reference contiguration, and with lincar response functions replaced by
parabolic forms, an analogy with standard procedures in classical linear clustic theory has
been found. Hence, for large finite strain one has simplified solutions to specitic problems
in plane stress, planc strain, and the torsion of bars of arbitrary cross-section.

Acknowledyements —1 am indebted to Professor Andrew Douglas for valuable conversutions, [ am also indebted
to Jumes Kelley, machinist, for his expertise and guidance in the difficult measurement of the inside diameters of
grossly deformed tubes.
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APPENDIX

The measurements of outside diameter and inside diameter that are the basis of measured £, (max) in columns
three and four of Table 2, are given in Table Al. Each outside diameter listed, whether before deformation or
after deformation, is the average of ten measurements in orthogonal directions at five locations along the tube.
Before annealing, the initial inside diameter was precision reamed to 0.3750 in. Each of the inside diameters is the
average of eight measurements, four at 45° apart at each end. They were made by point to point telescope gages
that were inserted into the open ends of the tube, allowing inside diameters to be determined in different parts of
the central section.

Table Al
Initial o.d. Deformed o.d. Initial i.d. Deformed i.d.

Test (in.) (in.) (in.) (in.)

1812 0.4200 0.4102 0.3742 0.3663
2211 0.4398 0.4300 0.3750 0.3648
1815 0.4195 0.4102 0.3745 0.3641
2269 0.4397 0.4290 0.3750 0.3646
1813 0.4200 0.4075 0.3745 0.3624
1805 0.4192 0.4053 0.3743 0.3605
1799 0.4192 0.4024 0.3760 0.3589
2270 0.4401 0.4195 0.3750 0.3555
1806 0.4190 0.3991 0.3740 0.3555
2316 0.4396 0.4137 0.3750 0.3525
2332 0.4150 0.3949 0.3750 0.3545
2317 0.4399 0.4135 0.3750 0.3523
2319 0.4396 0.4111 0.3750 0.3487
2286 0.4152 0.3870 0.3750 0.3494
2167 0.4151 0.3782 0.3755 0.3407
2169 0.4150 0.3720 0.3755 0.3368
2210 0.4399 0.3950 0.3750 0.3351
2271 0.4400 0.3875 0.3750 0.3292
2262 0.4396 0.3882 0.3750 0.3278
1974+ 0.4391 0.3943 0.3750 0.3386

t Pure tension.



